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Space Geodesy

» Definition:

“Satellite Geodesy comprises the observational and computational techniques which allow
the solution of geodetic problems by the use of precise measurements to, from, or between
artificial, mostly near-Earth, satellites.” (Seeber, 2003)

» Space Geodesy Systems:
» Global Navigation Satellite Systems: GPS, GLONASS, BeiDou, Galileo
» Very Long Baseline Interferometry (VLBI)
» Satellite Laser Ranging (SLR)
» Precise Range and Range-Rate Equipment (PRARE)
» Doppler Orbitography and Radiolocation Integrated by Satellite (DORIS)
» Ffc!



Space Geodesy-Characteristic
features

Reproduced and modified from Seeber (2003)
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» The missions’ target

They are not designed for monitoring the Earth’s natural hazards!



Monitoring Natural Hazards

» Monitoring: The regular and continuous observation of some quantity

The Earth’s Hazards

» QObservations:

» Carrier beat phases of electromagnetic signals received at/reflected from some
targets

» Travel time of electromagnetic signals received at/reflected from some targets
® Doppler shift in the frequency of electromagnetic signals

» Slant Wet Delays (SWDs)

» Total Electron Content (STEC or VTEC)
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Elements:
» Sensors: GNSS satellites & GNSS receivers

An infrastructure for data fransfer: Internet

Analysis center

» Alarm system: A warning sound, a web interface

Model: required for prediction



Sensors: Space Segment-general
concerns

®» Space & ground segments: Space vehicles and receivers

v Space segment is also the main concern in terms of the system cost
v' Space missions are designed to perform best in specific parts or all around the world
Example: GPS-MET versus GPS missions
v Space segment plays a key role on the resolution of a monitoring system both in space and fime

» Space configuration: An important element in every space monitoring system!
constellation design is a multi-dimensional optimization problem
®»  Minimum number of satellites
» Orbits’ geometry
»  Optimization measures or the mission’s target
» Geographical area which is to be covered

guarantee the performance of a system



Challenges: Sensors-Space
Configuration

» Satellite constellation: a group of satellites functioning in a coordinated manner
significant improvement in temporal and spatial coverage

» Constellation design is an extraordinarily difficult problem (a multi-dimensional
optimization problem)

The infinite number of choices for the six Keplerian orbital parameters

the mission objectives (different fithess functions)

overall cost for realizing the mission (number of orbital planes & number of satellites)
geographical area that is to be covered

collisions or interference at orbit plane intersections (phasing of satellites)

Similar satellite orbits are preferred
» reducing the fuel usage and hence increasing the life of the satellites

» There is no defined common process for constellation design



Challenges: Sensors-Space Segment

» Various constellation geometries were proposed to reduce this complexity

Space Constellations
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Walker

» A class of circular orbit geometries in an inertial frame I: T/P/F

= Orbit planes are evenly spaced on equator (360/P)

= Evenly spaces satellites in every orbit (360/S) Global'naya Navigatsionnaya Sputnikovaya Sistel
Walker Delta 56°:27/3/1 constellation
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Flower

The constellation provides a closed orbit in a rotating
coordinate frame

Flower constellation for Global Navigation
e (l) Np]p :‘Nd[(f
,-"_ | _ _ ||} ()4, e, 1 & @ are the same for all satellites

(1) . & fulfill the following equation (k=1..N:)

NQ,+N,M, =constmod(27)



Streets of Coverage

» The constellation consists of polar orbits

= Orbit planes are evenly spaced on equator: 180°/n,
= Evenly spaces satellites in every orbit:  360°/ n,

n, . number of orbital plane

r of satellites




The mission objectives or fiftness
functions

» Example 1: a regional positioning mission (the APSCO member states)
= Sateliite visibility PDOP =,/Q, +Q,, +Q.,

» Djlution of Precision
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The mission objectives or fiftness
functions

» Example 2: QZSS mission (for comparison)




The mission objectives or fiftness
functions

» [fxample 3: a regional RO-mission

» Point-to-point distribution norm
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2D-Veronoi tessellation using 20 generators




World wide distri
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The mission objectives or fifness

functions

» Fxample 3: a regional RO-mission

World wide distribution of RO-profiles:
3D-LFC

elen A 5 140 e 80" ao”

1207

1300

World wide distribution of RO-profile

2D-LFC



Ground segment

» Surface of the Earth:

GNSS-R, Altimetry & SAR Interferometry
» Receivers: IPGN (C-GPS)

Reflection points due to DEM for
(a) DOY 300, time interval 23-24 in local time &

Challenges: Sensors-Ground segment
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(b) (b) DOY 301, time interval 17-18 in local time
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Challenges: Modeling

» Modelis the process of finding a solution of an inverse problem
» Example 1: 3D-analysis of the Earth’s surface deformations

» |n Space Geodesy, inverse problems are improperly posed
» Example 2: Troposphere monitoring

The problem is formulated in terms of the Fredholm integral equation of the first
kind
» Some does not have a unique solution

®» The model output is sensitive to the perturbation of input parameters
(measurement errors)

» Constfraints or additional information is inevitable



Challenges: Modeling-Discretizing

» Measurements are not continuous
Discretization is inevitable in practice

» Mesh of element

Example 1: Deformation analysis

Example 2: GNSS tomography

» Conftributing parameters:
» Geometry of the elements
» Model resolution

®» Dynamics (physics) of the problem



eometry of the elements
(Deformation & Troposphere monitoring)
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The TU-1 model together with the GPS & GPS-R ground
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local €qrtesian coordinate frame

Rate of Gaussian curvature in Iran
based on a mesh of triangular
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Model space resolution
Troposphere moniforing
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Dynamics of the problem
lonosphere monitoring

Measurements 2015-11-08 09:04:00 Electron density 2015-11-08 09:04:00

® GNSS receiver
* GNSS sat pp (350 km)
4. Beacon receiver
© Beacon sat pp (350 km)
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Dynamics of the problem
Wet refracfivify moniforing

Based on WRF model outputs
generated by
'Isruhe Inshfufe lf Te _,hnology

U Gaussian Copula is not

suffcient.
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sufficient to describe the full




Challenges: Modeling- Validation

» Modeling data is different from validation data
» Example 1: GNSS Seismology
» Seismic records versus the GNSS position time series
» Example 2: Troposphere Tomography

» Radiosonde profiles versus SWDs

» Spatial distribution of validation data is usually poor as compared to the
modeling data

» |1 is not possible to simply extend the validation results to the whole test areal

®» Example: Troposphere Tomography



Validation: Radiosonde & synoptic
versus GPS stations in Iran
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Challenges: Modeling- Validation

» Challenge: Is the accuracy and precision of proposed model similar or at
least comparable everywhere within the model (test) area?

» Sensitivity of model to perturbations of input parameters
®» Time response of the model
» Size or the model elements
How the continuous inverse problem is discretized both in space and time
» Dynamics of the model parameter

» How the model is constrained in order to compute a unique solution
» 2l



Validation: Radiosonde & synoptic
versus GPS stations in Iran
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Thank you



