

Towards InSAR everywhere, All the time: opportunities and challenges

Mahdi Motagh

Acknowledgements: M. Haghshenas Haghighi, M. Vassileva, J. Neelmeijer, Z. Wang, J. Hu, W. Tang, H. Sharifi, S. Vajedian (LUH)

Synthetic Aperture Radar (SAR)

Alimits

Range

ne-or-sight LOS direction

- Active remote sensing
- Transmit and receive microwave
 - Amplitude: reflectivity of the ground
 - Phase: sensor-to-target distance

- No matter day or night
- No matter clouds or rain

SAR Interferometry & Imaging Geodesy

if $\delta \phi = 2\pi \Rightarrow \Delta R_{def} = \frac{\lambda}{2}$

The Bam earthquake occurred on

Phase unwrapping

$$e^{p} = \sum_{i,j} (\hat{\phi}_{i+1,j} - \hat{\phi}_{i,j} - \Delta_{i,j}^{x})^{p} + \sum_{i,j} (\hat{\phi}_{i,j+1} - \hat{\phi}_{i,j} - \Delta_{i,j}^{y})^{p}$$

$$\Delta_{i,j}^{x} = \psi_{i+1,j} - \psi_{i,j}$$

$$\hat{\phi} = \text{unwrraped (unknown, to be estimated)}$$

$$\psi = \text{wrapped phase}$$

$$\Delta = \text{derivatives of the observed phase}$$

$$p = \text{exponent (1,2,...)}$$

InSAR time-series analysis

l l Leibniz l 2 Universität l 0 4 Hannover

Landslide

Dam monitoring

Volcano hazard

SAR Missions

<u>991 1995 1998 2000 20</u>	03 2007 2010 20	013 2015 2018	3 2021 2024	
1992 ERS-1	2011	2014 2017	2023 20	026
J-ERS ERS-2 RADARSAT-1				
Former sensors	ENVISAT ALOS RADARSAT-2			
 Sporadic acquisition plan Focused on specific regions Multi-task SAR acquisition Relatively short lifetime 	COSMO-SkyMED (4 TerraSAR-X	4 SAT) KOMPSAT-5 ALOS 2		
 C (5.6cm) X (3.1cm) L (23.5cm) 	 Sentinel-1 Regular acquisition plan Global acquisitions Designed for InSAR Long lifetime > 20 years 	SAOCOM (2 Sentinel 1A/B	Sat) CSG (2 SAT) RCM (3 SAT) NISAR	

Checking transient in aquifer systems: Example from Tehran, Iran

- > The largest city in southwest Asia Population: 6.8 M (1995), 13 M (2018)
- > 3000 identified illegal wells; > 10 m reduction in water level in 25 years

Haghshenas Haghighi & Motagh (2019, RS of Environment)

Leibniz

100

Universität

Hannover

Land subsidence in Tehran, Iran

Leibniz 102 Universität 4 Hannover

100

- 120 km of railway \triangleright
- 2300 km of road \triangleright
- 21 bridges \geq
- 30 km of oil pipeline
- 200 km of gas pipeline >
- \triangleright 70 km of high-voltage electricity lines
 - > 250.000 buildings

(a)

Land subsidence in Tehran, Iran

11 Leibniz 102 Universität 1004 Hannover

- 120 km of railway
- 2300 km of road
- 21 bridges
- > 30 km of oil pipeline
- > 200 km of gas pipeline
- 70 km of high-voltage electricity lines
- > 250.000 buildings

(a)

International exposure

LISTEN LIVE

The Current

This a view of an airport in Tehran, Iran, where subsidence is being recorded via satellite. (AP Photo/Vahid

Vertical displacement

Enviat 378

1 1 Leibniz 102 Universität 1004 Hannover

Enviat 414

GFZ

POTSDAM

Tracking transient

GFZ

POTSDAM

InSAR time-series

1082 Ê 1080 1078 2 Ê (and and a second 0 2000 -2 64 8 4 128 2 Deriod 526 1 1/2 512 1/4 1/8 2004 2005 2006 2007 2008 2009 2010

The same 1-year period in both time-series

Haghshenas Haghighi & Motagh (2019, RS of Environment)

Groundwater level

Sentinel-1: A game changer in space

TOPS: 250 km x 1000+ km: Continental scale InSAR

- 20 year operational program, designed for InSAR
 - Free, full and open data policy

SAR data is growing faster than what we expected!

l l Leibniz 102 Universität 1004 Hannover

Source: unavco.org

Figure 28: Heatmap of Sentinel-1 published products (excluding OCN) published since start of operations Source: Sentinel data access 2017

ERS 1/2 and Envisat Sentinel-1 (1991-2012) (until Feb 2019)

Big amount of data, but not much information

annual report

Nation-wide deformation map

1 1 Leibniz 102 Universität 1004 Hannover

Q: Challenges in large-scale?

https://insar.ngu.no/

 Spatiotemporal variations in Atmosphere represent one of the major limitations of repeat-pass InSAR

Examplary interferograms

Geomagnetic Storm on 17.03.15

Tropospheric phase delay

Sentinel-1 data over Iran

- Sentinel-1 observation in Iran
 - In both ascending and descending
 - 12 day repeat interval
- Dataset used here
 - 10 descending orbit
 - 66 frames
 - 2014 2018
 - ~3500 Sentinel-1 images
 - ~14 TB of SLC images

Land subsidence detection

Examplary interferograms

(a) 2017.08.05-2017.10.28
(b) 2017.04.07-2017.07.12
(c) 2016.07.29-2016.11.02
(d) 2017.02.18-2017.05.13

Large-scale analysis

Land subsidence in Iran

National exposure

ILeibnizI2UniversitätI4Hannover

- Moderate-resolution C-band Sentinel-1 (S1) is a game changer in delivering low-latency products to both the science community and the public.
- Challenges in S1: Big data, near-real time processing and correction, data mining and deep learning approaches
- CR-InSARs are promising tools for developing the next generation of **Reference Points** for precise infrastructure stability analysis