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Adjustment and Interpretation of 
LIDAR Data
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LiDAR Mobile Mapping: Riegl VMX-250

Scan plane #1

Scan plane #2

(Cameras)

GNSS/IMU
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LiDAR Mobile Mapping: Riegl VMX-250
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Adjustment of huge datasets
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Latent map approach

► Latent map element m

► Basic principle of photogrammetric bundle adjustment
(tie points)

► Cost: additional unknowns     total surface
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Overall Bayes network
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Matrix layout

► Solution: 

surface (map)

  PlAPAAX T1T* 


anchors

Type 1
330 M

278 k

Type 2

Type 3

PAAT
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MapReduce processing scheme

► (key, value) pairs generated by the mappers:
(trajectory-id, (anchor-id, ATPA and ATPl sub-blocks))

Map tiles

Tile LSMs t: i, ATPA, ATPl

t: i, ATPA, ATPl

Map Shuffle Reduce

t: i, ATPA, ATPl

t: i, ATPA, ATPl

…

Tile LSMs

Broadcast
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Original scans overlaid
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After alignment
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Original scans overlaid
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After alignment



Adjustment and Interpretation of LiDAR Data Claus Brenner | 170 mm (blue) – 100 mm (red)



Adjustment and Interpretation of LiDAR Data Claus Brenner | 180 mm (blue) – 7 mm (red)



Adjustment and Interpretation of LiDAR Data Claus Brenner | 19

Latent map vs. image

(Image source: Google StreetView)
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Badenstedt: 150 Streifen, ~ 1 Mia. Punkte
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Before adjustment
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After adjustment
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Latent map elements
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Signed distance histograms

► Signed distance between points and latent map

► It’s a histogram with 0.1 mm buckets!
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Example: anchor estimation for one trajectory
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Ricklingen dataset

(Aerial image credit: Microsoft)
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Ricklingen dataset

(Aerial image credit: Microsoft)5.128 bn original points
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Performance

► Intel i7-4790k (4 cores, 8 threads)

► Data read from SSD

► Tiles 15 x 15 m2

Badenstedt Ricklingen
Points (segmented) 1.1 bn 3.6 bn
Point data (segmented) 59 GB 199 GB
Scan strips 150 485
Number of tiles 1,287 9,588
Average / max points per tile 813 k / 18 M 371 k / 7 M
Latent map elements @ 2cm 330 M 1.9 bn
Estimated orientation unknowns 278,052 780,780
Processing @ 2 cm (one iteration) 710 s 2,260 s
Overall processing: points/s 1.5 M 1.6 M
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Hadoop Cluster since 2017 (RTG i.c.sens)

► 6 x 2 CPUs, 96 Cores

► 768 GB RAM, 288 TB HDD

► 10 Gbit switch (2x10/server)

► Extra RAID file server

► Cloudera distribution



Dynamic maps: change detection
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Change detection and dynamic maps

► A hard problem: long-term mapping
► The world is not static, how to deal with changes?
 Stability-plasticity dilemma

 Naive approaches: static map, variable obstacles

► Idea:
 Identify latent variables that control “change”

 Allows prediction of dynamic “world state”

 Less “surprise” for the robot during localization and scene 
understanding 

► Experiments:
 3D occupancy grid, full LiDAR ray tracing

 Finding temporal patterns
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Not so small changes… 
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Geometry example: LiDAR scans: 1 (l)
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Geometry example: LiDAR scans: 1 (l+r)
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Geometry example: LiDAR scans: 12
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Geometry example: LiDAR scans: 123
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Geometry example: LiDAR scans: 1234
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Geometry example: LiDAR scans: 12345
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Geometry example: LiDAR scans: 1 (l+r)
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Geometry example: LiDAR scans: 2
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Geometry example: LiDAR scans: 3
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Geometry example: LiDAR scans: 4
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Geometry example: LiDAR scans: 5
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Long Term Data Acquisition

► ~20 km route in Hannover City
 Nordstadt

 Stöcken

 Leinhausen

 Herrenhausen

Mrz. 17 Apr. 17 Mai. 17 Jun. 17 Jul. 17 Aug. 17 Sep. 17 Okt. 17 Nov. 17 Dez. 17 Jan. 18 Feb. 18 Mrz. 18

Measurement Runs

20 km Route for biweekly measurements

► One year of biweekly measurements



Adjustment and Interpretation of LiDAR Data Claus Brenner | 45

Long Term Data Acquisition

► 25 measurement runs in total

► March 2017 until March 2018, 

► Different times of the day/ days of the week

9:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

Duration

Date

Hour
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Pre-Processing

► 14 measurement runs processed and 
aligned

► 1457 Scanstrips

► 15 017 586 980 Points

► Sort points into voxels
 Point in a voxel is a hit

 Ray going through a voxel is a miss

Mrz. 17 Apr. 17 Mai. 17 Jun. 17 Jul. 17 Aug. 17 Sep. 17 Okt. 17 Nov. 17 Dez. 17 Jan. 18 Feb. 18 Mrz. 18

all aligned
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Observation Sequence

Measurement 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Hits 0 1 1 0 1 1 1 1 0 0 0 0 0 0

Misses 0 1 0 0 0 0 1 0 0 0 1 1 1 1

► Each voxel stores a sequence of observations:
 For each measurement, a state is computed:

• Hit: At least one reflecting point (surface)

• Miss: At least one surface was traversed by a laser ray

► Example Sequence 2D
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Voxel „Hit“ Count

Example Voxel Grid (5 cm edge length), 
colored by number of „hits“ per sequence

1

14
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Voxel „Miss“ Count

Example Voxel Grid (5 cm edge length), 
colored by number of „miss“ per sequence

13

1
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Histogram of „Hit“-Sequences
(Julia Schachtschneider)

► 214 - 1 = 16383 distinct sequences (at least one hit)

► Most frequent sequences:

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sequence

Occurrence 
in %
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Most Frequent „Hit“-Sequences
Sequence 170322 170328 170331 170405 170413 170428 170509 170606 170620 170704 170808 170823 170905 171004%

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12,28

2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 6,30

3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4,79

4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4,20

5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3,98

6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3,72

7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3,36

8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3,18

9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2,85

10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09

11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2,06

12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2,03

13 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1,88

14 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1,67

15 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1,60

16 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1,02

17 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0,60

18 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0,58

19 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0,49

20 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0,48



Interpretation: Segmentation based on 
geometry only
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Segmentation of scan strips

► Efficient graph-based segmentation

► Combines “image topology” and “object space geometry”
 Processing operates on scan strips

► Homogeneity criterion: geometric C0 and C1 continuity
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Interpretation:
Point cloud classification using label 
transfer
Torben Peters @ ikg
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Motivation

Our data set:
point cloud 
fused with 
images

Cityscapes 
dataset

Annotated 3D point 
cloud
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Our data set
► The long-term, biweekly mobile mapping data acquisition
▪ Resulting in over 24 billion 3D points
▪ And over 250.000 images
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Cityscapes data set

► Consists of 25.000 annotated images
► 50 cities
► 20-30 classes

▪ Street, Sidewalk, Person, Car…
► Best classification solutions are based on Deep Learning

Source: Cityscapes
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Label transfer
► During our measurement campaign 

we captured images with 1 Hz

► These images are semantically 
segmented using PSPNet
▪ PSPNet was pre-trained on the 

Cityscapes data set

► The labels are mapped to the point 
cloud by projecting the 3D points to 
the image planes
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Label transfer
► Problem: 

▪ For nearly every laser point we are capturing more than one image pixel
▪ Therefore we are aggregating all transferred labels in one histogram per 

point
▪ Histogram: class vs. occurrence in images

► The resulting histogram can contain contradictory information due to different 
reasons

majority
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Label transfer
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Label transfer
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Label noise: occlusions

► Noise due to occlusion
▪ laser and image rays do not 

coincide
▪ 3D points being assigned the 

label of an occluding object
► This effect is mitigated to a certain 

extend by the accumulation of 
labels in histograms

point cloud colored without ray 
tracing

Building colored with 
tree trunk pixels

Road surface colored 
with car pixels
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Label noise: occlusions

► Further improvement by doing ray 
tracing 
▪ We used a 10 cm voxel grid
▪ When determining the label of a 

3D point, the ray to each camera 
center is traced in this grid 

▪ The point is considered to be 
occluded if an occupied cell is 
found along the ray

point cloud colored with ray tracing

point cloud colored without ray tracing
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Label noise: label policy

► Noise due to label policy:
▪ Surfaces behind tree crowns have to be assigned the tree label
▪ Some rays are going through tree crowns

• Some occluded points like facades will be labelled as tree

Semantically segmented 
image

Point cloud colored by majority 
label
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Label noise: label policy

Colored by major label Clustered by k-means: clusters 
shown using random colors

► By storing the aggregated labels in a histogram we are also accumulating 
labels from the object in the front
▪ We can use this information in order to identify the noisy histograms

► Example shows that k-means clustering is able to separate this kind of noise
▪ The histogram can be used as a feature vector
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Label noise: dynamic scenes
► Noise due to difference in capture time

► Use histogram, voxelization and campaign count to reduce the error

Unchanged dataset Cleaned dataset using only the 
histogram as feature

Cleaned dataset using also the 
campaign count
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Reduction of label noise

► We were able to rise the IoU to about 63.79% which is only 18% worse 
than PSPNet

► Using this approach we were able to recover erroneous labeled 3D points 
e.g.

– Sidewalk appears
– Bicycle rider is mostly labeled correctly
– Cars are corrected 

Unchanged dataset Dataset with flipped labels
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► We were able to successfully train a CNN on the 3D data
▪ The CNN reached an estimated IoU of ~59.3%

Using transferred labels as training data



i.c.sens
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Khajeh Nasir Toosi

► [Warning: Wikipedia knowledge]

► Mathematician, architect, philosopher, 
physician, scientist, and theologian

► Poetry: An example from one of his poems:

“Anyone who knows, and knows that he knows,
makes the steed of intelligence leap over the vault of heaven.

Anyone who does not know but knows that he does not know,
can bring his lame little donkey to the destination nonetheless.

Anyone who does not know, and does not know that he does
not know,

is stuck forever in double ignorance.”



Adjustment and Interpretation of LiDAR Data Claus Brenner | 86

Unknown engineer

► If we are sure our system is working
 We can go full speed ahead

► If we know it is not working
 We may use a fail-safe mode to get to the goal nevertheless

► If our system is not working and we don’t know
 We’re doomed!

► We need to know if our system is working within specifications
 integrity

► Others may help us to determine this
 collaboration



i.c.sens
Research Training Group

Integrity and Collaboration in 
Dynamic Sensor Networks
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Integrity
Collaboration

89
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„Mapathon“ (June, 12, 2017)
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„Mapathon“ (June, 12, 2017)
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Summary

► LiDAR alignment
 Large numeric problem (HPC)  Big data problem (Hadoop et al.)

 Relevant for crowd-based map acquisition

► Change detection
 Robotics problem, relevant for lifelong mapping, maps for SDC

► Interpretation
 Graph-based geometric approach, robust w.r.t. appearance

 Transfer learning: images and LiDAR, using Cityscapes + deep 
learning to transfer labels

► DFG Research Training Group: i.c.sens
 Integrity and collaboration in dynamic sensor networks

 Alternative error measures, image and LiDAR interpretation

 (Next PhD application round coming soon).


